
NPS55-90-03

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Lf

DTIC
E LECTE

MAR 161990

cE D
ITEM IDENTITIES AND THEIR RELATED OBSERVABLES

DONALD P. GAVER
PATRICIA A. JACOBS

November 1989

Approved for public release; distribution is unlimited.

Prepared for:
Office of Naval Research
Arlington, VA 22217



NAVAL POST;RADUATE SCHOOL,
MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared for Office of Naval Research and
funded by the Naval Postgraduate School.

This report was prepared by:

DONALD P. GAVER
Professor of Operations Research

PATRICIA A. JACOBS
Professor of Operations Research

Reviewed by: Released by:

PETER PURDTE KNEALE T. M'AR L
Professor and Chairman Dean of Information and llicy Sciences
Department of Operations Research



UNCLASSIFIErJ
SECURIT'i C'LASSir!CATO' "P '-5.~p

REPORT ri -"-UMENTATION PAGE
la REPORT SECURITY VASI'.(A1 N Ib RESTRICTIVE MARKINGS

UNCLASSII ED ________________________
2a SECURITY C ASS C AT ON' iAL,:-4R. Y 3 DISTRIBUTION 'AVAILABILITY OF REPORT

____________________________________Approved for public release; distribution is
lb DECi - SSF{ATION DO"WNGRAD N6 SCHEDULE unlimited.

4 Pi:R ORMING ORiGANZA1TiON REPOR1 NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS55-90-03

6a %AVE OF PERFORM N-3 ORGAN:ZATION 61b OFFICE SYMBOL 'a NAME OF MONITORING ORGANIZATION

(if applicable)
Naval Postgraduate School 55

6c, ADD ?ESS C'ty. State, j-Yr 71P Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a %AME OF r!jND NG ', 'ONSORING 8b OFFICE SYMBOL 9, PROCUREMENT INSTI' L) ENTIFICATION NUMBER
ORGANIZATION (if applicao.-I

Office of Naval Research 430 0&MN, Direct Funding
B(. ADDRESS (City, State. aid ZI ICode) 10 SOURCE U1 FUNDING NUMBERS

PROGRAM IPROJECT ITASK IWORK UNIT

Arlington, VA 22917 ELEMENT NO INO NO jACCESSI ON NO.

1 TITLI (Include Security Classif: -ation)

ITEM IDENTITIES AND THEIR RELATED OBSERVABLES

12 PERSONAL AUTHOR(S)
Gayer, Donald P., Jacobs, PatriCid A.

13a TYPE OF REPORT 1i3b TIME COVERED 14DATE OF REPORT (Year, Month D)2 COUN

Technical I ROM TO F 1989, November ay A7CUN
16 SUPPLEVENTARY NOTA"ON

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIE- GRU -BGR Bayesian paradigm, autqregressive process., classification,

19 A STRACT (Continue on reverse if necessary and identify by block number)

BEach of J items has a characteristic Signa-ture which varies in time. At time 0, the
value of a Signature and the identity of the corresponding item are known. No further
values of Signatures are observed until a later time t. At time t, a Signature from
an unknown item is observed. The problem is to estimate the identity of the item whose
Signature is observed at time t. The estimation procedure studied is to estimate the
identity of the unknown item to be that one which maximizes the posterior probability of
producing the observed Signature,

20 DISTP'BUI-;0N AVAILABILITY OF ARSTRACT 21 ABSTRACT C~ (I '~1I AS' I (KA TI

UUNCLASSIIED UJNLIMITED Ej SAME AS RPT 0DTIC IJSERS UNCLASS'i 1hE
-. 01N11 OF REiPONSIBLE INDIVIDU Ai 20 ~'TPIrioJ L "ru' I. . F SYMBOL

Donald P. Gayer (408) 646-2605 5Gv

DD FORM 1473, 94 %'AR 8E) APP -1dI'Ufl may be ,sed 011i T0i. I') O HIS PAGE
AII p d't-nrr~ap t'.I etl'

c C ' 1996-606-243



ITEM IDENTITIES AND THEIR RELATED OBSERVABLES

D. P. Gaver
P. A. Jacobs

Abstract

Each of J items has a characteristic Signature which varies in time. At
time 0, the value of a Signature and the identity of the corresponding item are
known. No further values of Signatures are observed until a later time t>0.
At time t, a Signature from an unknown item is observed. The problem is to
estimate the identity of the item whose Signature is observed at time t. The
estimation procedure studied is to estimate the identity of the unknown item
to be that one which maximizes the posterior probability of producing the
observed Signature.

Key Words: Classification; Bayesian Paradigm; autoregressive process
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ITEM IDENTITIES AND THEIR RELATED OBSERVABLES

D. P. Gaver
P. A. Jacobs

1. The Problem

We are concerned with a diagnostic problem that may occur in many
applied areas, with medicine and mechanical system reliability furnishing
handy examples.

Suppose there are J Items (e.g., diseases or faults), each of which has a
characteristic Signature which varies in time; the Signature of Item i is

i =1,2,...,j) = 0i + Xi(t) t = 0,1,2,... (1.1)

For the moment {Xi(t)} is an unspecified univariate stochastic process, but one
that loosely, has the property of staying near 0i in finite time, and for
convenience has some stationary or steady-state behavior. One could think of
Yi(t) as a physical index characteristic of a particular disease or disability, e.g.,
blood pressure, heart-beat pattern, mechanical vibration spectrum, etc.

Suppose that Yi(t) is only evident or observable occasionally at times
unrelated to the magnitude of Yi(t), but driven by other forces (this is a bit
implausible in some situations because a high blood pressure or temperature
may actually induce medical observation; the formulation can be changed to
reflect this later). Suppose that the Signature and the identity of an item are
both observed at time t=0. Suppose that later on, at time t, only the Signature
of an item is observed. The first question is: what is the probability that,
given the Signature value observed, its originating item is any particular one
of a list of candidates, e.g., i=13 out of a particular list j=l, 2, ... 13, ... J = 39?



2. Question: Who is Being Observed?

Here we become quite specific, assuming for illustration that the
Signature of Item j is AR(1):

Yj(t) = Oj + Xj(t), (2.1)

where

Xj(t) = pjXj(t-1) + Ej(t), t = 0, 1, 2, ..., 17, .. (2.2)

with lej(t)) -IID N (0,aC). For the moment assume that the basiL constants 01,

2
j = 1, 2,..., Jare known, as are the correlations I pj I 1 and the variances cy.

If I pj I < 1 then, given Xj(O), Xj(t) is Normal/Gauss
[- 2t""

Xt)I Xj(0) - N Xt) 2 21> (2.3)Y~ 2 j ~ -Pj I

or, in terms of the actual observable Yj(t),

Yj(t) I Yj(O) - N((Yj(O)-Oj)p + Oj, a(t)) (2.4)

Apparently if t runs on indefinitely, its distribution approaches

N(Oi~a (o) with aj(e) = aj/1-pj (2.5)

Scenario: Suppose there are potentially J items around, but admit the
possibility that each can vanish, so that there is some probability, which may
be less than one, that the item will actually be "around" at time t. Let the
probability that one, the jth, is present at t be p) (t). Next, let sj(t) be the
probability that the jth be observable, e.g., is emitting sounds, given that it is
present; assume independence between items. All of this is preliminary, and
can (and should) be modified as required. Now consider that event

A) Item i has been observed at t=0, and its Signature is observed/noted to
be Yi(o) = y(O).
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If it has been a long time since an observation was made then it is

plausible to take the probability of the above event as

P(Yi(O) E(dy(O)), 1(0) = i} = pi(O) si(O)(p -0) 1 dy(0) (2.6)

(p being the N(0,1) density; that is, we observe Item i after his Signature is in
statistical equilibrium, and measure time from that (such an) instant.

Time t elapses and then for any j (either the same as i, or different)

B) Item j is observed at time t>O, with Signature value Yj(t) = y(t).

Since the AR(1) process is Markov, we can write down the joint
probability

P{Yi(O) E(dy(0)), 1(0) = i, Yj(t) C(dy(t)), I(t) j =

,,,(y(O)-Oi0 dy(0) (y(t) - m1(t) dy(t) (2.7)NiO) SiO) GYM .i "O~o pi(t) sj Wt T) ojt (2.7)t

where we can think of pj(t) as the conditional probability that j is actually
eligible for observation, and sj(t) as the conditional probability of being
observable. Note that it is natural for j~i that

mj(t) = 0j (2.8,a)

a (t j(o) j / 1_2 (2.8,b)

for at t it is still a "long time" since j( i) was last observed; whereas if j=i, the
same item that was observed and identified at t=O, then

t

mi(t) = Oi + (y()--i) Pi (2.9,a)

and

2 (t)= . (2.9,b)

It follows that

3



C) the conditional probability of observing a particular item and
observing it with Signature value y(t) given the initial condition Ci(O) =

{Yi(O),I(O)} is just

P{Yj(t) ,(dy(t)), I(t) = j I Ci(0) a (y(O), I(0))) =

(ty(t) - mj(t) dy(t) (2.10)
pj~) s~t)q0 , j(t) )J Oj(t) (.0

where the appropriate mj(t) and oj (t) come from (2.8) or (2.9). In words, (2.10)
provides the probability of seeing or positively identifying a particular item, j,
and simultaneously measuring its current Signature value, given such a
complete observation at t=0.

Next

D) P{Y(t) -(dy(t))I CI(0)} = ;. P{Yi(t)(dy(t)), I(t) = ji Ci(0)}

=pj(t)sj(t) ( (y(t) - mi(t) dy(t) (2.11)1.P ts (  a j(t) ) Crj(t)"

This is the probability that one measures a Signature at t, but cannot make a
complete identification.

From (2.10) and (2.11) we can calculate the probability of the identity of the
item whose signature is measured at time t, given the last complete
observation:

pit j0(Y(t)-mi(t)'1
E) (M jI ~t = pt, i(t)= s( G j(t) )'oj(t) (2.12)

E) P(I(t) = ji(]) kt Y(t) = y(t), Ci(O)} i pk(t (2t2
-- ) SO~) ( Wt - mk(t) -. 1

O'k(t) GO(k~)

If one looks hard at (2.12) it seems clear that when pi>O and y(t) is near
y(O), and j=i, the above probability becomes closer and closer to unity as t
decreases, while if jfi that probability (that Item j~i) correspond-
ingly decreases.

4



3. The Probability of Making the Wrong Decision

In this section we study properties of making a decision based on
choosing the item which maximizes the posterior probability of a particular
item being the one whose Signature is observed at time t given the last
complete observation at time 0. For simplicity we will assume that there are
two items whose parameters are 01 and 02.

3.1 The parameters 01. and 09_ are known.

Suppose the parameters 0 1 and 0(2 are known and I piI <1. The condi-
tional distribution of Y(t) given Y(O) = y(O), 1(0) = 1, I(t) = 1 is normal with
mean

mi(t) = 01 + (y(0)-0l)p 1  (3.1)

and standard deviation

a1(t) = a1() t1-0 (3.2)

Further,

Y(t)-m2(t) Y(t)-ml(t) + (ml(t)-m2(t))
02(t) - a 2(t) (3.3)

01l(t) Y(t)-ml(t) mj(t)-m2(t)

a2(t) 01(t) + o2 (t)

where m2(t) and m1 (t) are given by (2.8).

Assume that item j will be identified with the Signature at time t if it
maximizes (2.12); then,

P {wrong item is identified 11(0) = 1, I(t) = 1, Y(0) = y(0)} (3.4)

1 { 1 (Y(t)m2(t)) 2

p2 (t)s2(t)( exp 2 2(t) 2  -

____P___ i (Y(t)-mi(t)) 2 / I(0)=1, I(t)=l, Y(0)=y(0)
expit 02( 2 )

> pl(t)sl(t) 1 (t



= 1,fp2)() Roi(t) >ep Z2 +1(c(t)Z + d(O)2l (3.5)
1j(t)si(t) 02(t) > x ~2 2

where Z has a standard normal distribution

0__t)_ f1_i a(1()

C(t) = 02 (t) = 1110(0

and

M1(t) -M2(t) (Y(O>-O)Pi + (01 0 2)
d(t) = 02(t) - 0(2(-0)

P {wrong decision 1 1(0) = 1, I(t)=1, Y(0) =y(O)1

=P P( )s2(t) I2(T) > exp{-l [(1-c(t)2 )Z2 
-2c(t)d(t)Z -d(t) 2

{-P 2 In [ 1 2t (t) (1-c(t)2)Z2 - 2c(t)d(t)Z - d(t)2}
- p1(tt~si~t) 11~0(0

Note that as t-*O 14 1-pi }-4- and thus

P~wrong decision I i(o) =1, i(t) = 1, Y(0) = y) --* 0.

Example: Suppose aj = cy i = 1,2, Ipi I p I < 1, i= 1,2 and pi tWsi(t) =p2(t)s 2(t);
then

P~wrong decision I1(0) =1, I(t) = 1, Y(0) = y(0)j

=P [O < (1-c(t)2)Z2 - 2c(t)d(t)Z - dWt2 + 2 In c(t) }(3.7)
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with

C(t) V1-lp, (3.8,a)

add(t) = .() O) -0)pt + (61-02) (3.8,b)

As t-*oo, d (6(1-02) c(t)-+ and

Ptwrong decision I1(0) = 1, 1(t) 1, Y(O) =y(O)1

where (D is the standard normal distribution function. In this case, the
conditional probability of making a wrong decision decreases as 0 1-021I
increases and the probability increases as a increases.

For arbitrary t > 0 such that c#1,

Ptwrong decision 1 1(0) = 1, I(t) = 1, Y(0) = y(O)}

[I( c(t) d(t) ' d(0)2  -2 In c(t))

- 1Z -c(t) 2 ) ' -1 I-c)) 1(t)2

Z c(t) d(t) . =d0 2 in c(t)

(1-1 c)t)
c(t2 (1 pt2) - p-

I - 0D ( 1.....p2t p- 2td(t) + k(t)) + i' ( NjZ-pi p- 2td(t) - k(t)) (3.10a)

where k(t) = [d(t)2 p-At - p- 2t In (1-p2t)].

Note that as t-40, c(t0--0 and the conditional probability of an incorrect
decision tends to zero.

7



A numerically more stable form of (3.10a) is the following.

Ptwrong decision I 1(0)=1, I(t)=LY(0)=y(0)) = 1-4(A)+((A 2) (3.10b)

where

A1 = [-d(t)2 + 21n c(t)] [c(t)d(t) - -/d(t)2 - (l-c(t) 2)21n c(t)]

A2 = -d(t)2 + 21n c(t)] [c(t)d(t) + d(t)2 - (1-c(t) 2)21n c(t)] -

The unconditional probability of a wrong classification can be found by
taking the expected value of (3.10b) with respect to the normal random
variable Y(O) with mean U1 and standard deviation o(-). The evaluation of
the integrals is performed numerically using Gauss-Hermite quadration with
59 points; cf. A. H. Stroud et al [19661 and Naylor and Smith [19821. Figures 1
and 2 show the unconditional probability of wrong classification at time 1, 2,
..., 100 for parameter values 01 = 1, 02 = 2, a = 1 and values of p = 0, 0.5, 0.8, 0.90,
0.95. (resp. curves A, B, C, D, E).

Figure 1 shows the probability of wrong classification. As noted above,
the probability of wrong classification is small for small values of t and then
increases to a limiting value. For very small times having a larger p results
in smaller probabilities of error. It is seen from (3.9) that the limiting value is

a function of (Y(o) = of/1-p2 . Hence the larger p is the larger the limiting
probability of wrong classification. Thus, while for very small times, having a
large positive p decreases the probability of wrong classification, at larger time
it increases the probability of wrong classification.

In Figure 2, each probability of wrong classification is divided by its
asymptotic value. These normalized probabilities are between 0 and 1. The
fraction (relative to the limiting probability) of the probability of wrong
classification for each time t is monotone in p. For a fixed time t, for a high p,
the fraction of the probability of wrong classification is less than or equal to
that for a lower p. The higher p is, the longer it takes for the probability of
error to reach its asymptotic value.

3.2. The parameters 01 and 02 have noninformative priors.

In this subsection we will assume that 01 and 02 have noninformative
prior distributions. Thus, assuming I pi I <1,

8
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P' [(o) edy(O), OedO 11(0) = 11

(1 (-) 22

Hence, formally for a non-informative improper prior,

P {Y(0)S-dy(0) 11(0) = 1) = I -dy(0) (3.12)

and thus

P {eede 11(0) =1, Y(0) = y(0)j

_ 1 1! ,2

2N 01J a(o) t2 K Y ~ dO . (3.13)

Further,

P {Y(t)edy(t), BOdO II(O)=1, I(t)=1, Y(0)=y(0)}

I ex 1 21

x exp 1- (0 - y(0))2 21~o

- ~o1 t~J~~(o)exp { (0Oil)l(t) 2~ R} (3.14)

where the usual calculations yield

[ 2(1-p' 1~
-jt = 2tPN~) 2 1(3.15)

( - 1-p1, 2 (.6
= y(t) -p,1 (O + Y(O)/a(lo) (.6

11



R v (t) 2 f/ i~2 (3.17)

2= 2 (2)

C11(o) a, / L1-P' (3.18)

0Y1(t) 2= (lP 2t)(o() 2  (3.19)

Hence,

P {Y~tedy(t) I1(0) = 1, I(t) = 1, Y(O) = y(O)j

2[i ]~2exp 1 (y(t) - y(O))/ 2 1-P tJ 2i1o (3.20,a)

Similarly

P{Y(t)edy(t),OedG I I(t)=2, I(0)=1, Y(0)=y(0)}

1 (1 2 2
- ? expt__ (y(t)_0)2/2(o) dytd

and

P {Y(t)edy(t) I 1(t)=2, I(0)=1, Y(0)=y(0)} = 1.dy(t) (3.20,b)

where 0y2(00) = C12/ ( 1-P 2)

Suppose item j is estimated to be the one observed at time t if it

maximizes

P {I(t)=j I(0)=1, Y(0) =y(O), Y(t)=y(t)}

It follows that

P (Item 2 is chosen I I(O)=l, Y(O)=y(O), 1(t)=1}

12



= P p2(t)s2(t) > pl(t)sl(t) .1() exp{-j (Y(t)-y(O))2/a(t) 2 I I(O)=1, I(t)=1, Y(O)=y(O)

= P {aal (-) p(t)S(t) -p > ex Z2

pf~2n~p~ 01 P2(t)S2(t) 1 ~2](.1
= P -2In -2x -p 1 (t)s1(t) -2(1-ppl < 3.1

where Z is a standard normal random variable and al(t) = ( J-pJ 0l().

Note that as t-40, the probability of choosing the wrong object tends to 0.
If

k(t) 2i- "-'lts(t) 21-p) > 1 (3.22)

.f P1(t)si(t) 1

then the conditional probability of making the wrong decision is 1.

If k(t) < 1 then

P {Item 2 is chosen I I(0)=1, Y(0)=y(0), I(t)=l}

= 2 [1-cD(-2 ln(k(t)))] (3.23)

where D is the standard normal cdf. Note that (3.23) is independent of y(O).
As al increases, the conditional probability of making the wrong decision
increases. Similarly as t increases the probability of making the wrong
decision increases. As pl(t)sl(t) decreases, the probability of making the wrong
decision also increases.

In the case in which pl(t) sl(t) = p2(t) S2(t), Pi = P2 = p>O, and al = (2 = 0

k(t) = r * l

13



For t = 1, k(t) and hence the probability of error decreases as p increases. For
t = 2, k(t) = a a for all values of p and so the probability of choosing the
wrong item increases as a function of t. The limiting value of k(t) as t-+

once again depends on () = ao/P41 2 . Hence as p increases the limiting
probability as t--c of choosing the wrong item increases. Figure 3 displays the
probability of choosing the wrong item for a = 0.1 and p = 0, 0.5, 0.8, 0.9, 0.95
(resp. curves A, B, C, D, E). Note that for t>2, it is p = 0 that has the smallest
probability of incorrect identification. These results depend on the specific
prior (3.20,b). In the next subsection we will consider Gaussian priors.

3.3 The parameters 01 and 02 have Gaussian priors

In this section we will assume Oi has a normal prior with mean Ai and
2.

variance T2 ,i = 1,2. Thus, assuming pi I <1,

P {Y(0)Edy(0), 0dO I I(0)=1}

1_____ 1 ex{- I ((0-2 I(6--t 2  dy1)2(324
1 2__2__l exp ( (O)o) 1 I " dy(0)dO (3.24)

222

1 (0--m (0)) 1

-2 1 1- v()

v ( ) 2 exp - 2 R(0) dy(0)d0 (3.25)

mF-G(0 ) = [(y(a o)2n ) 2+ 4 vl(0)2

2 22 2

-2 y ( ) + 0 1 (( )+) 
(L2

2 2 2 (3.27)

01l(00) +'C 1

14
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R ()=--- (y(O) - 1). (3.28)

with

2= 2 /2)
aoo a1/fl-pif

Therefore,

_______ J1 (0-ml(o)) 2P [Ocde I I(O)=1, Y(0)=y(O)} exp~ --. (3.29)
Nr'fcvl(o) 2 vi(O) J

Similarly, from (2.4)

P{Y(t)edy(t), GedO II(O)=1, I(t)=1, Y(0)=y(0)}

-T~at)exp {1 (y(t) - 0 - p (Y()O)) /a1(t) 21

x ep (mlO 2/V(0) 21dy(tOdO (3.30
-4-2,xv(O) e 2 0m~0)v

1 1 ~ 0-a(t) 2  1
- 4ait)~TviO)exp1 - it -Rl(t)j dy(t)do (3.31)

where

1 ft1p)/cIt2 + vI(0)] (3.32)

2 _______________ mi(0)
(3.33)

(0)0

and

16



(;It =t 2 l 0

[= )_l~o)M~o(_ )2(1-Pt) 2vl(O)2+ al(t)2] (3.34)

with

2 2 2t 2

Thus,

P [Y(t)cdy(t) I Y(O)=y(O), 1(0)=l, I(t)=11

-T2 [1~t 2

where

[orp2vio +1it) (3.36)

=a1(oT) 22
0 (oo) +'[ 1

= (lp)O(o2 [1 + + 2 a1(oo2( +

and

g1 (t) = ptly(O) + mi(O) (1-pt) (3.37)

17



2 2
1 '(0 ) 2

py (O)+oo i +py~ 1() + t } (- [1(O) + P') 0211
2 2

u (0) +T 

2 2 2 2
TI y(O) + 01(0) A p.+ 10(00 ci) y(10)-Ip(O)+ ]

222

T 2 (O) C ( 0) +t

~~1~o~(0A) (1 + p) + y(O{ + Ya(Oo)2

2 2

01(00) + T

Similarly,

P{Y(t)edy(t) I Y(0)=y(0), I(O)=1, I(t)=21 1 exp 1 (Y(t)-p2t)) (3.38)
2 T2(t) j

where

2 2 2
2t)= 0F2(0)2 + T 2

and

112(t) = 9~2. (3.40)

Once again we will estimate the identity of the item that was observed at

time t to be that item j for which

Pi (t) so(t) {x _ 1yt _ gt)221 (3.41)

18



is the largest.

Thus,

P [choose item 21I Y(O)=y(O) , 1(0)=l, 1(t)=1} (3,42)

= 2T2(t) 2 I

er- ((t) - 22

pI 2(t)s2(t) -p Jc t)Z + dtl21> PIt 1 s(t) exp 12 (3.43)
'T2(t) 2 jT()

where Ziastnrdnormal random variable.

C(t) -Ti(t) (3.44)

Ti + 1 1oo2 2
-Ca2(oo) +'C2

and

d(t) = 91 (t0-9.2(t) (3.45)T2(t)

t 2 2 A_*)Cl)2

2 2p1(y(O)-A.±) G(o) + (y(O) -12) 'r + (1-~)a~

072(-0) + T2 a(o 2 t

Hence

P [choose item 21I Y(O)=y(O) , 1(0)=l, I(t)=11 (3-46)

-P 1-2 In {T1(t) p2(t) S21(t) I 1-c 2) Z2 -2~~~) )21
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_d_ [t 2 ts2]t ( ct d(t) 2
= P 1-c(t) 2  -2 In c(t) p(t)S(t)-< 41-(t)2 Z- c(t)

if c(t) I <1

If pi(t) sl(t) = 0, then item 2 will always be chosen. Assume pi(t) slt) > 0.
If p 2(t)s 2 (t)=O, then clearly item 2 will never be chosen. In what follows
assume
pl(t) sl(t) and p2(t) s2(t) are both positive. Note that as t--O, Tl(t)--0, c(t)--+O
and

P {choose item 2 I Y(0)=y(0) , I(0)=1, I(t)=1} -* 0.

Also, as r2---)- and/or 02() , ,, c(t)-+O, d(t)00 and the conditional
probability of making a wrong decision tends to zero for t>O. Note that as
o1(t)-o, c(t)-*-, d(t)-*-, and the conditional probability of making a wrong
decision tends to 1.

The unconditional probability of a wrong classification can be found by
taking the expected value of (3.46) with respect to Y(0). It follows from (3.25)
that Y(0) has a normal distribution with mean 1 and variance a, (-)2 +,E12.

Figures 4 and 5 show the probability of misclassification for the case
p2(t) s2(t) = p1(t) s1 (t), Ti = T2 = 1, 01 = 02 = 1, 91 = 1, W = 2 and p = 0.0, 0.5, 0.8,
0.9, 0.95 (resp. curves A, B, C, D, E). The integration to evaluate the probability
is performed using Gauss-Hermite quadration with 59 points; cf. A. H. Stroud
et al. [1066] and Naylor and Smith [1982]. Figure 4 shows the probability of
wrong classification. For small times t having a larger p results in smaller
probabilities of error. The probability of wrong classification is small for small
values of t and then increases to a limiting value as t-)o. The limiting
probability of wrong classification increases as p increases. Thus, while for
small times, having a larger positive p decreases the probability of wrong
classification, at larger times it increases the probability of wrong
classification. In Figure 5, each probability of wrong classification is divided
by its asymptotic (as t-+-*) value. For a fixed time t, for a higher p, the fraction
of the probability of wrong classification is less than or equal to that for a
lower p. The higher p is, the longer it takes for the probability of error to
reach its asymptotic value.
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4. Conclusions

This paper considers a model in which there are J items each of which has
a characteristic Signature which varies in time. In the examples studied the
Signature process of each item is an AR(1)-type process independent of the
other items. At time 0 the value of a Signature and the identity of the
corresponding item are known. No further values of Signatures are observed
until a later time t. At time t > 0, a Signature from an unknown item is
measured. The problem is to estimate the identity of the item observed at
time t. The estimation procedure studied is to estimate the identity of the
unknown item to be that one which maximizes the posterior probability of
producing the observed signature. The probability of correct identification
depends on the parameters of the processes and the magnitude of t. The
smaller t is the greater the probability of correct identification of the unknown
item. For fixed time t a higher positive correlation results in a lower fraction
of the probability of wrong classification with respect to its limiting (as t-*-)
value.

It appears that the problem of this paper resembles the "missing-data
problem" of statistics; see Little and Rubin (1987). We plan to investigate the
connection more extensively in future work.
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